• Welcome, Guest! We hope you enjoy the excellent technical knowledge, event information and discussions that the BMW MOA forum provides. Some forum content will be hidden from you if you remain logged out. If you want to view all content, please click the 'Log in' button above and enter your BMW MOA username and password.

    If you are not an MOA member, why not take the time to join the club, so you can enjoy posting on the forum, the BMW Owners News magazine, and all of the discounts and benefits the BMW MOA offers?

LC 20 oil additive..

I have been using Techron regularly for over ten years in my 94 R1100RS. I usually go through two bottles of Techron per season. In 170k miles I still have the original fuel pump, fuel regulator and fuel injectors in the bike. I have never had the injectors out to be cleaned or flow balanced, and the bike idles smoothly and revs up great. So I do think Techron is a great product for regular use to keep the fuel system clean.

But to expect it to keep the combustion chamber and piston crown free of carbon buildup is an unreasonable expectation in my opinion. The Autolite plugs on my RS always have a great light tan color to them. But when I shine a focused light beam into the plug hole I can easily see carbon buildup on the piston crown. Very minimal, but it is there. Although the carbon buildup is not thick or crusty like in some carbbed cycle engines I have worked on over the years.
 
True, but even so do you really think the engineers that designed the oil are so stupid as to omit necessary additives from their additive package? And are you absolutely certain the people at LC 20 magically know just what additives are lacking in the oil you buy? And, if you change the oil at the recommended interval, why would you worry about the additive package in the oil wearing out?

If you read their site, and the links to the fleet's who use their additive you'll see what they claim and how they're not the same claims as the snake oil additive companies.

Here is the Dyson Analysis as well if you don't feel like searching around the site..

http://www.lcdinc.com/tests_dyson.php
 
Exactly! Thank you. I had trucks in my fleet running 20,000 miles per month and we had engines lasting past 500,000 miles with nothing more than routine maintenance, regular oil and filter changes, regular testing of the coolant (Nalcool additive in diesel engine coolant is essential to prevent pitting of the wet liners) and an "overhead "(valve) adjustment every 100K. One of our trucks that was dedicated to two careful drivers went over 900,000 miles before the engine , an older 14 liter Cummins "Big Cam" 400) needed an overhaul. If the oil you buy has the right additives to begin with, putting in additional additives is a complete waste of money. It accomplishes nothing. We used Chevron Delo 400 and changed this at 10,000 mile intervals, which is extremely conservative by modern standards. With the current synthetics oil changes are out past 20,000 miles and the engines last just fine.

I never worked in the truck shop, my thing was mostly marine propulsion and generators with some off the road heavy equipment. However I am fully aware with the proper maintenance it is very likely that what we referred to as automotive (truck) that a million miles can be covered before major overhaul. Anytime an owner has to pump 55 gallons of fresh oil into one engine you know he wants to be able to use it for its full life span and the only way to know this is through periodic oil analysis. If a Lubrifiner is in use thats another 5 gallons per engine.

Pitting of the wet liners is referred to as "cavitation". This condition will also pit the engine block in the O ring area, thus affecting the seal. It is caused by the coolant not being wet enough causing it to create bubbles, the bubbles collapsing is what causes the cavitation. The use of the proper amount of NalCool from the beginning of engine service, will actually permit the NalCool to penetrate the casting, which will be found clean and slightly tinted purple upon disassembly.
 
If you read their site, and the links to the fleet's who use their additive you'll see what they claim and how they're not the same claims as the snake oil additive companies.

If you pardon me saying this, it sounds like you prefer to believe the website of the people trying to sell you something than the accumulated knowledge of the people who have responded to your question.

In short - sounds like you're about to become a user of this LC20 stuff.

Just an observation. No offence intended.
 
I never worked in the truck shop, my thing was mostly marine propulsion and generators with some off the road heavy equipment. However I am fully aware with the proper maintenance it is very likely that what we referred to as automotive (truck) that a million miles can be covered before major overhaul. Anytime an owner has to pump 55 gallons of fresh oil into one engine you know he wants to be able to use it for its full life span and the only way to know this is through periodic oil analysis. If a Lubrifiner is in use thats another 5 gallons per engine.

Pitting of the wet liners is referred to as "cavitation". This condition will also pit the engine block in the O ring area, thus affecting the seal. It is caused by the coolant not being wet enough causing it to create bubbles, the bubbles collapsing is what causes the cavitation. The use of the proper amount of NalCool from the beginning of engine service, will actually permit the NalCool to penetrate the casting, which will be found clean and slightly tinted purple upon disassembly.

Lubrifiner? Geez, I hadn't thought of one of those in decades. You must be a two stroke Detroit man! Last time I saw one of those it was in a bus. Those old Detroit things burn so much oil that you are almost doing a rolling oil change as you drive. Burn oil, add oil, run oil through the lubrifiner, like some endless cycle. Modern four stroke engines don't use oil like that and none that I know of use Lubrifiners.

Correct about cavitation. I wasn't going to bore the audience with the technical explanation, but since you did, a tip of the had. Few outside the diesel world would think that the vibration in a wet liner caused by the piston moving up and down the bore could actually pull the liner away from the coolant, but it does. When the coolant shoots back into the cavitation, there is enough energy to pit the metal. Enough cycles and you can hole the liner and get a coolant leak. The way our rep describe it, the NalCool creates a sacrificial coating on the liner so any cavitation pits the Nalcool coating, not the liner, and NalCool in suspension in the coolant replace that which the cavitation wore off.

I wonder if the wet liners in my V-Rod need NalCool???
 
re:" As with most recent BMW engines, the engine management system keeps the motor

...Running as lean as possible results it high combustion temps and potentially adverse effects on engine metalurgy.
i stuck a power commander in my '09 harley and richened the f/a ratio which did reduce compustion temps as measured at the tail pipe with an ir sensor.
of course, my conscience does bother me a bit because i'm releasing a few more hydrocarbons in to the atmosphere and screwing with the ozone layer. so what i do is give a tree a hug after each ride.
 
...my conscience does bother me a bit because i'm releasing a few more hydrocarbons in to the atmosphere and screwing with the ozone layer. so what i do is give a tree a hug after each ride.

I wonder how many miles you'd have to ride your HD to spew out as many hydrocarbons as you did on one F14 sortie?
 
Lubrifiner? Geez, I hadn't thought of one of those in decades. You must be a two stroke Detroit man! Last time I saw one of those it was in a bus. Those old Detroit things burn so much oil that you are almost doing a rolling oil change as you drive. Burn oil, add oil, run oil through the lubrifiner, like some endless cycle. Modern four stroke engines don't use oil like that and none that I know of use Lubrifiners.

Correct about cavitation. I wasn't going to bore the audience with the technical explanation, but since you did, a tip of the had. Few outside the diesel world would think that the vibration in a wet liner caused by the piston moving up and down the bore could actually pull the liner away from the coolant, but it does. When the coolant shoots back into the cavitation, there is enough energy to pit the metal. Enough cycles and you can hole the liner and get a coolant leak. The way our rep describe it, the NalCool creates a sacrificial coating on the liner so any cavitation pits the Nalcool coating, not the liner, and NalCool in suspension in the coolant replace that which the cavitation wore off.

I wonder if the wet liners in my V-Rod need NalCool???

Well 4296, you hit the nail right on the head, I grew up with 2 cycle Detroits, beginning with the 51 series, I attended most all of their factory schools, and yes they used some oil, they were designed to do that. I still have the acceptable usage oil schedule. After leaving there I wound up with my fingers in many different makes and I assure you all dealerships have a pile of skeletons behind the shop. I believe I have you pegged as a Cummins guy, I found the old ones big heavy lazy and tough, I believe the newer ones are just great.

I have used NalCool in my cars, it worked great.
 
If you pardon me saying this, it sounds like you prefer to believe the website of the people trying to sell you something than the accumulated knowledge of the people who have responded to your question.

In short - sounds like you're about to become a user of this LC20 stuff.

Just an observation. No offence intended.

I'm inclined to believe the guys on Bob is the Oil Guy who for the most part seem to have empirical evidence that it works... I'm also inclined to believe the fleet studies on their website since if they were lying, they'd be liable for suit..

I mean there ARE additives that work well, and are almost universally acknowledged to, such as Techron, it's not like it's all snake oil, you just have to do the "due diligence" and sort them out..
 
........

flogging-dead-horse.jpg
 
I started driving in 1962. I don't put anything in my oil, gas or coolant. All of my stuff keeps going and going and going and going and going ....... without any issues.
 
I'm inclined to believe the guys on Bob is the Oil Guy who for the most part seem to have empirical evidence that it works... I'm also inclined to believe the fleet studies on their website since if they were lying, they'd be liable for suit..

I mean there ARE additives that work well, and are almost universally acknowledged to, such as Techron, it's not like it's all snake oil, you just have to do the "due diligence" and sort them out..

Lies in advertsing are as common as breathing. Why no lawsuits? In our legal system, you have to show you suffered a loss and then prove such and such product caused that loss, and you bought that product on false premises. You cannot file a suit just because you think someone lied in an ad, you have to convince a jury you were harmed by that lie. Good luck with that.

Geez people are gullible though. Why are you so determined to believe the lies of a snake oil salesman?
 
a VERY good read... LC20 is also a ZDDP additive. I think in this article he does say it's possible (depending on how you drive/ride), to wear thru the additive package in 3000 miles, and with a 6000 mile interval, I'm pretty sure most if not all the additive package is worn out by that last 1 or 2 thousand miles..

... and what empirical evidence leads you to believe that? results of an oil analysis from Blackstone labs? (the one i see most commonly used by beemer riders for assessing their used oil). other quatifiable data form some other source? or just baseless suppositions that make you feel better about using some additive package that claims it will allow its users to walk on water, rise from the dead, and turn your water into wine?

It seems that you really want to buy that LC20 stuff, don't you? so i would suggest that you go ahead and use it, but you should probably stop waiting for the majority of responders to jump on that bandwagon with you in support.
 
... and what empirical evidence leads you to believe that? results of an oil analysis from Blackstone labs? (the one i see most commonly used by beemer riders for assessing their used oil). other quatifiable data form some other source? or just baseless suppositions that make you feel better about using some additive package that claims it will allow its users to walk on water, rise from the dead, and turn your water into wine?

It seems that you really want to buy that LC20 stuff, don't you? so i would suggest that you go ahead and use it, but you should probably stop waiting for the majority of responders to jump on that bandwagon with you in support.

spend some time on BITOG and do a few searches, you'll find the data, or just look at the Dyson analysis that's linked from their website, or just try a google search and see what everyone else on the internet is saying... :stick

here's one for starters..

http://forums.tdiclub.com/showthread.php?t=118608
 
or better yet, here is Terry Dyson's report:

1.0 Introduction.
This is an updated report for LC20 and FP60. This paper discusses the toxicology of the constituents, experimental observations, and recommendations. LC20 and FP60 are liquid cleaners with pink color and an exotic but pleasant odor

2.0 What is LC20 (LC) and FP60 (FP)?

These products are a set of chemicals blended to produce a lubricating cleaner (LC) and fuel system cleaner (FP) with varying ingredients of solvents and specialized oils. The ratios of individual constituents vary between the FP60 and the LC20.

2.2 Mixing Ratios. While the older LC20 formulation dosages may have been appropriate for the sludge producing engines and poor oil formulations of the late 1950ÔÇÖs and early 1960ÔÇÖs, it is too potent a cleaner for modern lubricant formulations in its present suggested dosage; hence the following new recommendations.

2.2.1 The recommended treatment rate of LC for engine lubes in 4-cycle gasoline or Diesel engines is 1 0z./Quart for the initial dose, and 1 oz. every 1,000 miles or 1,610 km. Do not overfill crankcase.

2.2.2 For 2-cycle engines ?? oz. or 10 cc per gallon of Fuel/Oil mix is sufficient for this application.

2.2.3 For automatic transmissions, 1.0 oz. or 30 cc for every 10,000 miles. Check ATF oil level while hot; do not overfill.

2.2.4 For power steering systems, 0.5 oz. or 15 cc. Check Power Steering oil level and do not overfill. Check when Power Steering Pump is hot.

2.2.5 For industrial hydraulic systems, 1% by volume should be sufficient. For example, if the sump tank capacity for a hydraulic system were 5 gallons, the suggested dosage would be about 6.0 oz, for a ratio of 1:100.

2.2.6 Engine Flush at a dose of 4 oz./Quart or 120 mL/L of PCMO (16 oz. per four-quart sump capacity with the engine at idle for 15 minutes or less) immediately before changing to new oil.

2.3 FP60. The ratio of FP60 to fuel for maintenance dose is a ratio by weight of 1:640. The treatment rate of 1 oz./per five gallons is sufficient for both gasoline and diesel engines, 2-cycle and 4-cycle engines. An initial ÔÇ£shockÔÇØ dosage of 2 oz. per 5 gallons may be needed for neglected fuel systems.

2.4 Base Oil Compatibilities. LC20 has been tested in a 10% solution by volume with both conventional and synthetic lubricating oils. Amsoil and Mobil 1 full synthetic 10W30ÔÇÖs show complete miscibility with no separation of components or negative affects on current additive make-up. Compatibility with conventional oils is, as expected, excellent.

2.5 Literature and Marketing Claims.

a.) ÔÇ£Liquifies carbon and varnish.ÔÇØ Yes it will do that and do it well. This was proven by the author as explained in the Experiments section. LC will also free stuck rings.

b.) ÔÇ£Toughens Oil Molecules.ÔÇØ For the case of LC20, this claim cannot be substantiated. This statement is ambigious and has no industry standard by which to test it.

c.) ÔÇ£Better Mileage.ÔÇØ The ingredients in FP do provide more Potential Energy per liter of fuel, giving rise to better fuel mileage.

d.) ÔÇ£Easier Starting.ÔÇØ This depends on condition of engine, battery, starter, and viscosity and condition of oil.

e.) ÔÇ£More Power on take-offs [acceleration].ÔÇØ Depends on conditions stated in d.) and fuel delivery system.

f.) ÔÇ£Longer Engine Life.ÔÇØ Too many factors to substantiate this claim. A cleaner engine is a more efficient engine - that statement can be substantiated.

g.) ÔÇ£Reduce Crankcase Temperature.ÔÇØ A cleaner engine uses less power and has less friction. Less friction equates to less heat.

h.) ÔÇ£Helps eliminate diesel smoke.ÔÇØ If it reduces blow-by and promotes combustion efficiency, yes. The FP60 will have more effect on this condition than will LC20. That FP60 reduces diesel smoke has been borne out by experimentation.

i.) ÔÇ£Longer Injector Life.ÔÇØ Yes. By not only cleaning the injector with FP60, but lubricating it as well, the injector will stay cleaner and continue to produce a more optimum spray pattern, resulting in increased combustion efficiency and less injector wear.

3.0 Experimental Investigations.
3.1 Oil Miscibility. 10% by volume of LC20 and three different oils were mixed in separate 500 mL beakers and mixed at 85 0F. These oils were 1.) Conventional mineral oil SAE 20W20 API Rated SA, 2.) Amsoil ATF 10W30 80% POA and 20% TMP polyol ester full synthetic, 3.) Mobil 1 10W30 SuperSyn. These mixtures were allowed to sit for 72 hours undisturbed. No separation of components was observed, and no globules formed. Freezing of the oils at temps of 0 0F and showed no signs of gelling or solidification.

3.2 Flammability. One had to take an LP torch (3000 0F) and boil the top of the LC to a vapor phase before ignition would occur, and then would only burn until the vapor pressure of the liquid exceeded the oxygen content, which would then extinguish the mixture. When 10 cc of LC20 were dropped on a hot exhaust manifold, it would simply bead-up and vaporize. FP60 did the same, except it formed smaller globules and evaporated much quicker. I see no flammability problems with either product when accidentally spilled on a hot manifold or headers.

3.3 Crankcase Cleaning.

A 20 year-old Briggs and Stratton 3.0 HP mower engine was reclaimed and cleaned. The time on the engine was estimated at greater than 2,000 hours. Synthetic oil had been used in the engine before the carburetor had failed. The engine had not run for seven years. The engine was relieved from the deck, and the sump was inspected by borescope. The crankcase had about 3 oz. of very dark and dirty oil remaining, with some condensed water. The crankcase was not drained. The mixture from beaker No. 1 one was poured into the sump. The spark plug, carburetor and muffler were removed to invite borescope inspection into the cylinder to observe piston crown and valves. The upper cylinder and piston top had black, hard carbon deposits. The cylinder liner still had the original cross-hatch marks and was unscratched and in no way had been damaged. A ?¥ horsepower electric motor was attached via a reduction pulley system and V-belt to spin the engine at 700 RPM. The motored engine activity was allowed to run for 5 hours. The head was removed after the five-hour test. All carbon and combustion deposits had been either softened or mixed with the oil in the cylinder. No scarring was observed nor were any deposits found in the ring pack. Most head deposits has literally ÔÇ£meltedÔÇØ away.

Deposits on the valves had started to flake off and disperse, but were now very soft. Bearings appeared to be shiny, but not polished. I also disassembled a 2-cycle engine that had carbon deposits on the head and had a stuck ring. I hung the crankcase upside down so that the piston was completely immersed in a beaker of 400 mL of SAE 20W20 and 100 mL of LC20. After about 20 minutes of occasional agitation of the piston, the ring freed itself from the piston lands without further assistance!

3.3 Observation of Crankcase Oil. While the engine had not been heated by combustion, the engine had been heated from viscous (kinematic) friction. The bulk oil was only slightly darker than the oil from beaker one. Very small particles (0.5 mm or less) of carbonaceous material were seen floating in the oil. The oil was left until the next day to observe the effects on particles. The particles had dissolved completely into solution and were no longer in suspension. The oil was only slightly darker than the day before. About 10 grams of carbon were scraped from the crowns of several old pistons and placed in the oil. After three days of occasional agitation, the carbon had dissolved and the oil had darkened considerably, indicating the breakup and solving of the carbon.

3.4 Deposit and Residue Tests

Lab bench tests were done on LC and FP for burning and deposit residues at > 750 F, and It was observed that very thin transparent films were left behind by either product. The deposits for 30 ml of either fluid weren't measureable on an electronic scale accurate to 0.001 grams. I.E., virtually no deposits. Consider that putting in one ounce of FP for every 640 ounces of gas, and you will find that the fuel will contribute more deposits in one tank full than will FP or LC for the lifetime of the vehicle.

4.0 Further Suggestions and Applications.
4.1 Penetrating oil. I mixed by volume, 70% LC20 and 30% synthetic Dexron III ATF to produce an optically pleasant and very effective penetrating oil. I applied this mixture to muffler and tail pipe clamps. Rust and corrosion products immediately dripped with the solution and once the nuts were removed, the threads of the bolts were like new. The remaining oil tenaciously clung to the assembly to protect it from rust.

4.2 Engine Flush. As stated above, 16 oz. of LC20 in 3.8 Liters or 4 quarts of oil before an oil change, with the directions to run engine at fast idle for 15 minutes, and then drain oil.

4.3 2-cycle and 4-cycle pre-lube. LC20 can be used as a pre-lube for end-of-season storage or for pre-conditioning the rings and removing combustion deposits before startup. Remove spark plug and turn flywheel to place piston at bottom of stroke. Place 30-60 cc or 1-2 oz. of LC20 into the spark plug hole. Replace spark plug and set overnight. This will soften carbon deposits on the piston and free stuck ring(s), as per experiment above. The next day, slowly turn flywheel to force lubricant onto the liner and into combustion chamber, in order to lubricate cylinder and free stuck rings. The lubricating and anti-rust properties of LC will insure that no rust forms on the rings as well. Either store or fire up engine. I used this procedure on a weed eater and two chainsaws. Engine will smoke for about 30 seconds after ignition so this must be done in an open area!

5.0 Seal and Hose Compatibility.
5.1 A concern I had with both FP60 and LC20 was the effect it would have on seals and hoses, especially as applied to hydraulic systems found in power steering pumps, automatic transmissions, and other hydraulic systems. I took one plastic bucket and placed 1ÔÇ£ sections of seven different hoses (including vacuum hoses) and 13 different elastomer seal materials in 100% FP60. For the LC20, I mixed 50 mL of LC20 and 200 mL of SAE 40 SA oil (a 1:5 ratio by volume) and placed the same set of hoses and seals in another bucket. Lids were placed on both buckets to inhibit evaporation. After fifteen (15) months of soaking and occasional agitation, I opened up both containers and observed the seals and hoses. Two of the seals were valve stem seals; one of Viton and the other of Nylon. The other seals were O-rings of Neoprene and of other elastomer types commonly found in carburetors and fuel injectors. One seal was an engine crankshaft seal. No softening, cracking, peeling, or bleaching of any of the seals or hoses were observed. No dimensional changes in any of the seals or O-rings were to be found. No changes in the moduli of any of the seal materials were observed. The color and consistency of both the LC20 and FP60 remained constant. This experiment tells me that elastomers and various rubber and synthetic rubber compounds are not affected by either product in the term of the testing period.

5.2 While much of the report has centered on LC20, one more experiment was performed on Fuel Control. Two Kohler gasoline engines of 7 and 16 Horsepower were run using two different treatment levels of FP60. Using a Radio Shack IR thermometer calibrated to a Fisher ÔÇ£scientificÔÇØ alcohol chemical thermometer (itself calibrated to NITS), I ran a number of head temperature tests while aiming the IR thermometer at the same ÔÇ£headÔÇØ location for consistency. At a fuel ratio of 1:640, head temperatures averaged 290 F for the 7 Hp engine and 327 F for the 16 Hp engine. I drained and flushed the fuel system with naphtha and purged it with dry air. I then ran the engines with a ratio of 1:64, ten times the suggested mix ratio. After the engines came up to operating temperature (after 10 minutes of running at 90 F ambient) the head temperatures were again measured. This time, the head temperatures were 297 F for the 7 Hp engine, and 339 F for the 16 Hp engine.

The conclusion is that higher treatment ratios increase combustion temperatures, but only for treatment ratios ten times or more above the suggested ratios. For my application, this short term test also yielded a plus; since Kohler engines are noted for running rather rich fuel mixtures and also somewhat higher blow-by than other small engines, combustion deposits tend to form rapidly and present themselves as thick, tenacious deposits.

The higher Fuel Power to gasoline ratio caused the carbon deposits to be expelled through the exhaust system. Combustion chamber inspection revealed no damage to the cylinder, and no valve burning or recession. In fact, the exhaust and intake valves were cleaner and had fewer deposits than before. While I would not recommend this treatment ratio as a matter of practice, it does illustrate the cleaning power of the FP60. So over time, FP60 should gently clean the combustion chamber, while LC20 is softening carbonaceous deposits throughout the engine, especially the ring pack.

5.3 Corrosion Study
Two sets of complete roller bearing assemblies and individual split bearings were used as a test for corrosion. A used bearing assembly (race and tapered roller bearing) from a rebuilt differential was soaked in LC20 to remove old deposits and films. After the soaking and wiping with a clean cloth, the bearing appeared almost unused. The bearing assemblies were then immersed in naphtha to remove any traces of heavier hydrocarbons and subsequently dried. The assembly was then heated with a torch to 500 F and then dropped into a bucket containing a solution of saturated salt water and 20-18-12 fertilizer. While the bearing assemblies were soaking in the saturated salt water solution, the split bearings were being prepared for the salt bath as well. The split bearings were rod bearings from a 350 cu. in. Chevy Small Block engine. The split bearing had a steel base and a layer of aluminum overlay with a copper-lead alloy coating. A 1ÔÇØ wide strip was scraped of overlay coating exposing the base metal. After being rinsed with naphtha, this bearing was prepared as above and dropped into the salt solution.

The bearings were left in the salt solution for three days. They were allowed to dry for one day forming crusty corrosion deposits and rust. They were then placed into separate buckets containing FP60 (full strength) and LC20 (250 mL of LC20 to 1.0 L of SAE 20W20 API rated SA mineral oil. The LC20 completely removed all crustations and rust in less than one day, with the deposits falling to the bottom of the bucket, and the bearings receiving a coating of protective oil from the LC20. The FP60 took three days to completely remove the rust and deposits. FP60 also coated the bearings with a thinner coat of oil. Both products appear to be effective in removing rust and protecting from further corrosion. What we can conclude form the corrosion tests are these thoughts:

a.) LC20 has a higher concentration of component ÔÇ£yÔÇØ than does FP60, b.) The selection of base oils used in both products are of a very high quality oils, with more than sufficient protection additives to remove, disperse, and protect from rust and other corrosion products. c.) The component ÔÇ£xÔÇØ of the formulation is also very effective in penetrating corrosion and rust.

6.0 Conclusion
6.1 LC20 and FP60 act synergistically to keep an engine running at top efficiency. FP60 supplies extra energy to increase fuel mileage, while at the same time, cleaning the fuel system and combustion chamber of deposits, and supplying lubricants to lubricate fuel pumps and injectors. LC20 softens and dissolves carbonaceous deposits in the ring pack and hidden crevices of the engine. LC20 should be used at the treatment rates suggested by the author, so that component x does not ÔÇ£depolymerizeÔÇØ Viscosity Index Improvers (VIIÔÇÖs) or synthesized oil esters.

6.2 At room temperature (20 0C), the component x in LC20 will evaporate in three weeks. In an engine crankcase, the component x will decompose within 500 to 800 miles. Toxicology studies indicate this product is safe if used within the guidelines of accepted practice, and provided instructions and appropriate warnings are part of the productÔÇÖs labeling.

7.0 Storage of Products.
7.1 Store LC20 in Type "2" HDPE, PolyMethylPentene (P.M.P.), or polypropylene containers. Storage in any other type of container may cause leakage and loss of product.

8.0 Statement of Confidentiality.

8.1 During the period of the LC20 and FP60 product analysis, no information was given to any individual or entity, other than Terry Dyson, as to the identification of these products, their formulations, or the results of experiments
 
a VERY good read... LC20 is also a ZDDP additive. I think in this article he does say it's possible (depending on how you drive/ride), to wear thru the additive package in 3000 miles, and with a 6000 mile interval, I'm pretty sure most if not all the additive package is worn out by that last 1 or 2 thousand miles..

Number one, oil companies that sell oils designed for extended drain intervals have additive packages that last long enough to provide protection for that extended drain interval. Oils for heavy duty diesels are formulated to last 20,000 miles between changes and do so routinely with no damage to the engine.

If the flat tappet issue bothers you, then learn about the European ACEA Oil Sequences. Since the most recent API grades have taken out some wear additives to protect the catalyst, most European car manufacturers now require owners to use oils that meet specific ACEA oil sequences, plus their own specifications on top of that. Oil manufactures now sell oils that will have labeling that says the oil meets something like ACEA A3/B3. Learn what those letters and numbers mean. Here is a guide to these oil sequences.

http://www.acea.be/images/uploads/files/2010_ACEA_Oil_Sequences.pdf

In general, if you buy an oil that meets standards of the ACEA A3/B3 or A3/B4 sequences you will have an oil that more than meets the requirements for any BMW engine ever made ( and the hairy old Detroit iron with flat tappets) with no need for any additional additives. If your favorite oil does not show the ACEA sequence on the label, contact the company and ask. Mobil-1 15W50 for example meets ACEA A3/B3. It does not say so on the label, but I contacted an engineer there and asked. AMSOIL likewise meets this standard. So do others.

VW, Mercedes Benz and BMW (cars) all have additional standards they apply on top of the ACEA standard. VW/Audi publishes standards with names like VW 501 01 or VW 505 00 among a half dozen different oil specs they publish for different engine applications. Again, you have to read the label to find what oils meet your specific engine manufacturers specs.

For get API, their specs no longer apply to anything European. Use the correct ACEA sequence for your application and forget wasting money on snake oil additives.
 
Back
Top